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Abstract

Topologically massive chromodynamics is studied at a finite temperature
T. The topological gauge invariance present at T = 0 is argued to remain
valid at T # 0, but verifying this in the quantum theory is far less direct
at T # 0 than at T = 0. Debye screening occurs, and has a striking
effect on the correlations of static magnetic fields. The behavior of the

free energy at high temperature is also computed.
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I. Introduction

In three space-time dimensions, adding a Chern-Simons term! to the Lagrangian
for a non-abelian gauge field dramatically changes the theory.?~® Most notably, in-
variance under topologically non-trivial gauge transformations is no longer assured.
To do so at the classical level, the coupling of the Chern-Simons term, which is a

mass m, must be equal to an integer ¢ times g?/4r, where g is the gauge coupling.?

How does this topological gauge invariance manifest itself in the quantum the-
ory? At least in one special case-in Landau gauge when g > 1-it is straightforward
to calculate the (finite) renormalization of this integer, gren.> For an SU(N) gauge
group without fermions, to one loop order g,en = ¢+ N. Beyond leading order in the
loop expansion, ¢,., does not change, and a new, topological Ward identity emerges
to ensure invariance under large gauge transformations. What was not clear be-
fore was whether this ¢,., was a gauge-invariant, and so a physically meaningful,
quantity.

In this paper I consider topologically massive chromodynamics at a finite tem-
perature T. My purpose is simply to gain greater insight into the physics of these
unusual theories.

This hope is certainly borne out by the first topic I consider, which is the topo-
logical gauge symmetry at T # 0. Common sense tells us that if ¢ and gy, are each

integers, then by continuity they must be independent of temperature.

Classically this is obvious, for the same facts of cohomology!® which quantize ¢

as an integer at zero temperature apply without modification when T # 0.

At first, this doesn’t seem to be true in the quantum theory. If one blindly
recalculates at T # O in precisely the same way as at T = 0, it appears that g,n is
not an integer when T # 0, but just some ugly function of m/T. I shall argue that
this is simply because one cannot be blind in calculating g¢,., at T # 0.

Understanding how to correctly calculate g,., at T # O suggests a general un-
derstanding of ¢,... I propose that ¢,., can always be defined by the behavior of
the full, effective action under topologically non-trivial gauge transformations. I
then conjecture that with this definition, ¢,., is 2 physical quantity, in that it is

independent of the choice of gauge, boundary conditions, and so forth.
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For reasons that will become clear, usually it is extremely difficult to calculate
gren. If My conjecture is true, this is unnecessary, for one can simply compute in a
convienient gauge, such as Landau, with convienient boundary conditions, such as

at zero temperature.

While I shall present some evidence in support of the conjecture, admittedly it
is limited. Even so, given the fundamental role that topological gauge invariance
plays in these theories, then if they are consistent quantum field theories, it is very
hard to see how it could fail.

I am also led to make a second conjecture. The relation gr.n = ¢ + N was
computed for an SU(N) gauge group in weak coupling, which is large ¢g. Since the
bare value of g is itself an integer, there is no guarantee that this relationship could
not change discontinuously as ¢ decreased. I suggest that this does not happen
- that g,en = ¢+ N as long as the bare value of ¢ # 0. It might be possible to

understand why ¢,., — ¢ is proportional to N by considering Z(NN) monopoles in

SU(N).6

I start in sec. II by reviewing topological gauge invariance at T = 0. I pay
particular attention to some of the details which were previously swept under the
rug,® for what’s under there is crucial in understanding g,., at T # 0. Fermions
also contribute to g,.n, and in sec. III I show that their contribution is the same
at T # 0 as it is at T' = 0. The methods which I use are not only circuitous, but
special to fermions.”® This demonstration is still instructive, for it does show that
the way in which the topological gauge invariance works need not, and usually will

not, be as transparent as the consequences of invariance under infintesimal gauge
transformations.

I demonstrate that Debye screening occurs at ' # 0 in sec. IV, and that it
has unexpected effects. At T = 0, the correlations of all fields are screened over
large distances by the Chern-Simons mass. For any T # 0, however, while the
long-distance correlations of electric and non-static magnetic fields remain screened,
those of static magnetic fields are not. Because of the coherent oscillations in the

thermal plasma, static B fields do develop long-range correlations.

I discuss some features of the free energy in sec. V, including how easy it is to
compute its behavior at high temperatures.
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II. Topological Gauge Invariance at T =0

I follow the conventions and notation of ref. 3. For simplicity, I take the gauge
group to be SU(2), and use both the Pauli matrices ¢* and the anti-hermition
7%,7% = 0°/21. I put the fermions in the fundamental representation, with Ny flavors

of mass my, and use a P-even regulator, so there are no “regulator” fermions.

The Chern-Simons term,
Sm = —im/d%e“”'\tr(A,,B.,A;\ + ggA#AuAA) (2.1)

transforms under a gauge transformation {1 as

. (4
Sm — Sm + ?/dSzeﬂ-uAa“tr ((BUQ)Q-IAA) + 27t ( Z:n) w. (2.2)

Write (1 in terms of elements of the Lie algebra, ©%:
1 = ezp(i0°0©?), (2.3)

0% = ©6¢4,(69)? = 1. Then w, the winding number, can be expressed as a surface
integral:!!

1 .
w = g [ Fe0ut,

sin 20
2

= (@ _ )epuAeabcéaauéba,\éc (2'4)
If ©% is an arbitrary function of Z, w can take on any value, and the theory is
not gauge invariant. To ensure invariance under large gauge transformations, it is

necessary to assume that space-time can be treated as a compact manifold.

At zero temperature, this means that {1 must approach a unique value (o at
space-time infinity, and so space-time is isomorphic to the three sphere S3. From

homotopy theory, the mappings from S? into any Lie group are labelled by an
integer which is the winding number w.

Since {1 is a constant, as long as all A, are pure gauge rotations at infinity,
the A,-dependent surface term in eq. (2.2) vanishes. Following Deser, Jackiw, and
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Templeton,? we can then arrange for the partition function to be gauge invariant,

at least classically, by choosing 47m/g? equal to an integer q.

It helps to have an example of an I with w # 0. In SU(2), by a global gauge
rotation I can take 0, = *1:

31

\/__ffj_p_z) . (2.5)

From eq. (2.4), this Q has w = n, with Q, = (=)".

) =ezxp (iwn

8

In eq. (2.5), p is a scale size 0 < p < 0o. Instantons in four space-time dimensions
also have a parameter p which characterizes their size, but for instantons, p is a
physical quantity. Here, p is merely another parameter which labels the infinite

degeneracy of topologically non-trivial gauge transformations.

It is easy to generalize this to SU(IV), by embedding the Q of eq. (2.5) into an
SU(2) subgroup of SU(N). Up to global color rotations, {1, is a diagonal matrix
with elements +1 and —1.

A natural question is whether further restrictions can be placed on the 0’s so as
to forbid those with w # 0. For the {1 of eq. (2.5), this seems possible, since for this
.ﬂ, the contribution to w is entirely from the point at infinity. Perhaps one could
impose w = 0 by requiring ©, eq. (2.3), to vanish at infinity.

This hope is misplaced. By a smooth gauge transformation, one can rewrite
the {1 of eq. (2.5) in a form where the point at infinity, represented say by the
north pole on the three sphere, makes no contribution to w. But because w is a
topological invariant, this would only be shifting the point which gave w # 0 to
some other point on the three sphere. In the original space-time, any such point
lies at finite Z, and is not affected by the boundary conditions at infinity. Hence
in these theories, topological gauge invariance is an unavoidable consequence of the
local gauge symmetry.

Things are not so obvious in the quantum theory. One would like to determine
gren from the effective action, computed to some order in the loop expansion, in the
presence of a background field A} with w = n. While this A}, will be a pure gauge
field, A} = 0719,0/g, for finite p this necessitates calculating the effective action
for a background field which is large in magnitude (A7 ~ 1/g) and has a momentum
dependence that cannot be neglected.
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Suppose, however, that the scale size p is very large. By increasing p, we can
make the magnitude of A7, and its typical momenta (~ p~!), arbitrarily small over
~any finite region of space-time. As p — oo, all that contributes to the effective
* action is the renormalization of the Chern-Simons term, computed about the trivial

vacuum, A} = 0, at zero momentum.

This means that the effective action must have a well-defined expansion about
zero momentum. For covariant gauges, this is only true in Landau gauge.® Using

this gauge in weak coupling to one loop order,?

2

Z N

Gren = Zm (_Z"’> g=g+ N+ Sgn(mf)é (26)
g

for an SU(N) gauge group. Z,, is the mass renormalization constant evaluated at

zero momentum, etc. For ¢ and g, to be integral, N; has to be even,® but there is

no restriction on the gauge group. (4} should be put into Landau gauge, but this

can obviously be done).

Corrections to eq. (2.6) are ~ 0(g™!), so for g,.n to remain an integer at large g,
eq. (2.6) must be exact. This implies a topological Ward identity that relates Z,, to
the other Z's.3 This topological Ward identity is very similar in form to the usual
Ward identities of infinitesimal gauge invariance. Nevertheless, it holds only for Z's
evaluated at zero momentum in Landau gauge, since only then is one computing

the renormalized action for {'s with scale size p — oo.

The effects of topological gauge invariance can not be as simple at non-zero
momentum-in any gauge-as they are at zero momentum in Landau gauge. To probe
non-zero momenta, the background A}, must be generated by an {1 with finite scale
size. But then A} is large in magnitude, and so calculating correlation functions
about the trivial vacuum will not tell one much about correlation functions in the

presence of such an A}}. An explicit example of this will be seen in the next section.

It cannot be easy to show what I conjecture g,., is - namely, a gauge-invariant
measure of the (inverse) dimensionless coupling constant. Following Witten,” we
understand® that fermions contribute to g,., because the fermion measure in the
functional integral - that is, their effective action Ny trIn(J2 — my) - is not invariant
under large gauge transformations. Since ¢,.. 7 ¢ even without fermions, this

means that the measure for gauge fields in the functional integral, including ghosts
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and the like, must also transform non-trivially under large gauge transformations.

So why should the conjecture about g,., hold? For the quantum theory to
make sense, ¢,., must be an integer. It seems unlikely that g¢r., would change
discontinuously as one continuously varied parameters like QU's scale size, those
for gauge fixing, boundary conditions, etc. While difficult, perhaps the proof of
the conjecture would also yield some insight into the effects of topological gauge

invariance at non-zero momenta.

III. Topological Gauge Invariance at T # 0

In thermal equilibrium at a finite temperature T, the gauge ﬁelds A, and the
fermions fields 1 obey the boundary conditions

Aﬂ(f’t + ﬁ) = +Aﬂ(f$t)’ ¢(Est + :3) = _"p(f, t) (3'1)

B =T-!, and Z = (Z,t): the three momenta 5 = (7, py), where p, is an even or odd
multiple of 7T for bosons or fermions, respectively.

I assume that like 4, the allowed gauge transformations = Q(Z, ) are strictly
periodic in time. (When there are no fields in the fundamental representation, {}
need only be periodic up to a global Z(N) transformation, but for our purposes,
this can be ignored. This Z(NN) symmetry does play a role in the presence of
monopoles.®) Compactifiying space-time, we obtain S? x S!- but homotopy theory
does not tell us how to classify maps from S2? x S! into a Lie group.’® We must
resort to cohomology theory,'® which says that the mappings from any compact
three-manifold into a Lie group are characterized by an integer, which is of course
the winding number w. Since any compact three-manifold will do, ¢ must be an
integer for all (physically reasonable) boundary conditions. This includes not just
finite temperature, but even if we put the theory in a box which is of finite size in
all three directions. |

A prescription for constructing a strictly periodic 2 with winding numberw = n
can be given. Start with a four-dimensional instanton, with instanton number = n,
at a finite temperature T.'° This is an A, in singular gauge that is strictly periodic
in time. Choose one spatial direction, say z;, and transform the instanton into

4, = 0 gauge. This is done by a gauge transformation ~ P exp( [2 A,dz)), and so



-7- FERMILAB-Pub-86/32-T

the instanton is still strictly periodic in time in 4; = O gauge. At z; = —o0, we
can insist that A4, = 0; at z; = +o0, 4, = 0719,Q/g,1 = 2,3,4. Because of the
relation between winding number and instanton number, this (? is what we want-it
depends only on the three-space defined by z,,zr3, and t, is strictly periodic in ¢,

and has winding number = n.

In practice, this construction is very cumbersome, and it is easier to guess.

Consider
1 = exp (ZWi%C:) . 6) (3.2)

S} depends only on the spatial Z, and is chosen to be a two-dimensional instanton !

with instanton number (for maps of S — S$?) = n:
n= Siwfdzi’ €7¢%°0°%9,;6%9,6° (3.3)

When Z — oo,(:)(f) — a constant, and 1 — a constant Q. (e does depend on
time, but this is allowed for a manifold isomorphic to S% x S1.

As in four dimensions, the two-dimensional instantons ©(Z) come in all scale
sizes p. Using eq. (2.4) shows that the winding number of eq. (3.2) is w = 2n. I
have not been able to guess a form for a strictly periodic 0 with odd w - following
eq. (3.2) gives an anti-periodic -but the construction described above shows that

such (Vs do exist. The gauge field generated by eq. (3.2) is

127 _ A
4 = 2Z5.0,
° g8
A = 1 {exp (Zwii) (1-5-0)—exp (—2m’i) (1+45-6)
4q Ji] B
+20-6}5-0:6. (3.4)

I now make an elementary observation. By making the scale size p of © arbitrarily
small, I can make A; and the typical spatial momenta of Ay and A; arbitrarily
small. What I cannot do is make the magnitude of Ao, or the energies of the A;,
small. This is true for any {1 - to have w # 0, Q must depend on time, and so have

non-zero energy. At T # 0, no energy # O can be smaller than 2xT.

In considering g¢,.,, for the sake of simplicity I concentrate on the effects of

fermions. As explained in the previous section, at T = 0 gy, is determined from
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Z’s evaluated at zero momentum, eq. (2.6). Fermions contribute equally to Z and
Zg4, so only their effect on Z,, matters; Z,, = 1 +II,, where II, is the P-odd part of
the gluon self-energy. I do the most naive thing possible, and evaluate II,(7, po) at

T # 0 in exactly the same way as at T = 0-by taking po = p = O:

d3k
27)3

ferm _ ZIn_f 1 .

sz/ 1 2 _ E; ) d*k
T I \3E T B3 + exp(E,/T))  2Tcoshi(E,/2T) ) (2n) ’

for fermions in the fundamental representation; E; = / k? + m$. Subscripts + or -
on integrals or traces refer to boson or fermion boundary conditions, eq. (3.1). At

low temperatures,

2

erm g .o
] 0,0)7 g1 37y $97(m ) Ny (1 — 10ezp(—|my|/T) +--2) ,  (3.6)

while at high temperatures,

2

er 39
T™(0,0) 150, — o S97(ms) Ny + - (3.7)

At T = 0,qIT/*™(0,0) = sgn(m;)N;/2, eq. (2.6), but for any T # 0, ¢II/*™(0,0) is
Just some involved function of m;/T.

(As an aside, note that the sign of II/™ differs at high temperature from that
at low temperature. Hence if one started with a gauge theory with no bare Chern-
Simons term, ¢ = 0, then the sign of the Chern-Simons term induced by the fermions
would change as the temperature were raised. Presumably, there is a temperature
T.,T. ~ O(|my|), at which the induced term evaporates - II/*™(0,0) = 0 at T).

To correctly calculate the fermion contribution to g,.n at T # 0, I start with the

fermion part of the effective action. To one loop order, this is
SIT™M(AL) = —Nytr_ln(@ + g A —my). (3.8)
Following the definition of g,., proposed in the introduction,

SIm(An) — sim(0) = (2min)gls™ (3.9)

qrcn
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where A7) is a pure gauge field of winding number n, as in eq. (3.4).

ferm ferm

Jerm could be found by brute force. For a scale size p > 1, S;;;" can be
expanded to quadratic order in the A7, but all orders in the large field A} must be
kept. This is why eqgs. (3.5)-(3.8) doesn’t get ¢fsr™ right: implicitly one is expanding
in A?. Although large in magnitude, A} is approximately constant in space when
p > 1. Expansion to quadratic order in the spatial derivatives of Af would give

g/s™, but only after much effort and with no insight.

There is an easier way. Consider the variation of S{;}’" with my:

5}

1 1
ferm¢ in ferm _
—Bmf ( ot (AR) — Sify (0)> = Nytr_ (

ArgAr—my P—my

) (3.10)

Since g A" = Q! 30,

1 1
= Nstr_ [ Q———07! ——) =0, 3.11
f ( p Jp— (3.11)

g —my
by the cyclic property of the trace. Contained in the definition of the trace are the
correct boundary conditions for the fermions, eq. (3.1). As a large gauge trans-
formation, ! can only be commuted in the trace if it does alter these boundary

conditions; this is why I insisted that 2 be strictly periodic in time.

Eq. (3.10) shows that ¢/™ is independent of the magnitude of the fermions’
mass, so I can choose to evaluate it at zero mass. Arguments first used by Witten
in a related context can then be employed.” Remember the construction of an 1
with w = n at T # 0. Consider the dimension z; simply as a parameter that
interpolates between ? = 0 at z; = —oo, and the ()} with w = n at z; = +oo0.
Both )’s are proper gauge transformations, so the eigenvalues of #+g A” and 2
must be identical, but as z; : —oo — +00, levels can cross from negative to positive
energies (or vice versa). The number of such crossings is related to the number
of zero modes in the instanton field, which in turn is determined by the instanton

number. In this way, one mimics the analysis at T = 0 to find®

det_(@+ 9 A™) = (=)"V1det_(). (3.12)

Trivially, this result is independent of the scale size p. From egs. (3.9) and (3.11),

ferm

Jerm must be proportional to Ny/2. I make the small step of assuming that the
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constant of proportionality is sgn(my), and so ¢/"™ = sgn(my)N;/2, exactly as at
T =0, eq. (2.6). (For this to be consistent, it is necessary to define sgn(m;) = +1
or —1 as my — 0% or 07).

The trick of eq.(3.10) does not seem to help with gluons. With S.;; the total

effective action,

0 1
5;’; eff — —1’7—1 < Sm > ’ (3‘13)

where < S,, > is the vacuum expectation value of the Chern-Simons term, eq. (2.1).
(< Sm > is not manifestly invariant under topological gauge transformations, but
becomes so when the sum over positive and negative winding numbers is performed).
Unlike fermions, < S,, > depends on both two-and three-point expectation values

of A,, and so it appears that S.;; could depend on the magnitude of m.

IV. Debye Screening at T # 0

The effects of Debye screening follow from the properties of the gluon vacuum

polarization tensor, I1,, (7, po). As at T = 0, an infinitesimal Ward identity requires
p“n,uv =0, (4'1)

but the consequences of eq. (4.1) are very different, depending upon whether py =0
or pg # 0.1°

I start with the static limit, pp = O. Eq.(4.1) is satisfied by
M = Ia(p%)
Mo = me; p’ o(7°) (4.2)
L = (6 7° —p'P) Mmae(7°)
?,7 = 1,2 refer to the spatial directions. II,; and IInay can be viewed as self-energies
for electric and magnetic fields, while IT is a P-odd piece like that at T = 0; there

is no P-odd term in IL;, since it would be ~ €; po. Eq.(4.1) does not require Ilgg

to vanish as p — 0, so we can define an electric mass m? = I1,;(0) :

I (5") = m, + §* Ty (5) - (4.3)
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', and Il,,,, will contribute to wave-function renormalization for the electric and

magnetic fields.

To determine the electric mass, it is easiest to observe that by eq.(4.2),m? =
11,.(0,0). I assume the gauge group is SU(N), with Ny flavors of fermions in
the fundamental representation. I work in Landau gauge, since that is the only
(covariant) gauge that is infrared finite at T' = 0.3 To one loop order, m} is a sum

of fermionic and gluonic pieces:

k*+3m?: &Pk k? +3m? d3k
= g, [ FromE Bk p B 4
=N ey O @y e Y
Performing the sum over energies ko,
¢ 4T | cosh?(E;/2T) (27)?
E? + m? m? d*k
2 4.5
8 N/ (E3(e:z:p(E/T) - 1) * 4TE23inh2(E/2T)) (27)2° (4.5)

E; = \/Ez +miE = \/;2 +m?. From eq.(4.5), to leading order the contribution of
both fermions and gluons to m? is a finite and positive quantity for all temperatures.
At low temperatures, T < |my| and T < m,m? is exponentially small:
2 2
g°Ny . g‘N

m?, =0 5y |my| ezp (—|my|/T) + =—m exp (—m/T) + ... (4.6)

T 27
This exponential suppression with temperature occurs because all massive particles
are essentally non-relativistic at low T, and so their fluctuations-which give m?%- are
down by corresponding Boltzman factors. At high temperature,

2 g*Ny

S~

g*N
el 150 "oy

T
—_— — 4.7
Tin2 + Py Tln( ) + (4.7)

m

Note the factor of In(T'/m) which appears for gluons but not for fermions. This
happens because only bosons can have zero energy at T' # 0: the bosonic part
of eq.(4.4) with ko = O contains terms which are ~ [ d%k/(k? + m?) ~ In(T/m).
The gluonic part of eq.(4.7) agrees in magnitude-but not in sign-with results of d'
Hoker.'?(He considered a theory with no Chern-Simons term, so his m is just an
infrared cutoff.)
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Up to this point, there are no surprises. Let me now take eq. (4.2), and compute

the remormalized gluon propagator for py = 0,5 # 0 In Landau gauge,

z2 -
:'):)n = (Zel 52 + mfz + uc mZ) 3

Zmag
()
r:n = _me; — ren 4.8
0 J I—)-z Zmag 00 ( )
pipj Zel ﬁq + mgl
ren  _ i — AT
= (5’ 7 ) g 7200
where
ch = 1 + n:l s
Zmag = 1+ Hmag ) (4'9)
Zm = 1+411,.

Zq and Zny,, represent wave-function renormalizations of electric and magnetic
fields, while Z,, is a mass renormalization constant for the Chern-Simons mass
m. Consider eq.(4.8) about zero spatial momentum. For clarity, I set the Z's = 1;
I also assume that m% < m?, which is necessary for the loop expansion to be valid.

Then as § — 0,

ren ~ i
00 mz’
1 P
ren . __ €; —, 4.10
O¢ m 7 52 ( )
Ayt~ (6,-1- - p‘—;{) ﬁczzi ‘i‘
p me p

Since I have set the Z's = 1, and neglected m? relative to m?, one would expect
that AJ should be equal to the bare propagator. This is true for A* and A",
but not for A7f" - instead of a factor of 1/(5* + m?) ~ 1/m?, there is a massless

pole, with a residue = m?2 /m?.

Eq.(4.10) shows that the static correlations of A; behave discontinuously with
temperature. At T = 0, they are exponentially screened over distances > m~1, but

for any T' # 0, they develop long-ranged correlations which are logarithmic in space.
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The limit T — 0 is still weil-defined, since the coefficient of the logarithm is ~ m?,

and this vanishes exponentially fast as T does, eq.(4.6).

In a non-abelian gauge theory neither the A; nor the field strengths are gauge-
invariant, so it is not clear what to make of this. The same phenomenon, however,
will happen in an abelian theory with a Chern-Simons mass term. Correlations of
A; are not gauge-invariant in an abelian theory, but those of the magnetic field, B =
€79;A;, are and analogous conclusions hold for the correlations of B. Physically, I
do not know why Debye screening and the Chern-Simons mass interact in this way.
It is certainly counter-intuitive to find that the Debye effect-which acts, as always,

to help screen electric fields-completely obliterates the screening of static magnetic

fields.

This effect only happens in the static limit. In the non-static case, py # 0, eq.
(4.1) implies?®
IL; ~ m3 6ijy Tloj ~ —m% p'/po ; (4.11)

the other parts to II,, all vanish as p — 0, and represent contributions to the
renormalization of wave-function and mass. m?%, which is a function of py, is similar
to m%, in that it does not vanish at 5 = 0. In the same spirit as eq.(4.10), if the
renormalized propagator is calculated using just the self-energy of eq.(4.11), one
finds that the renormalized propagator has the same behavior for § — 0 as the bare

one, with no singular dependence on m?.

This discussion has overloéked one minor point. The bare propagators for the
gluon and ghost have massless poles ~ 1/k?; for the gluon, they are just in the
P-odd part. For any temperature or external momentum, whenever virtual gluons
or ghosts carry zero energy in a graph, these massless poles will produce terms,~
f d2E/ k2, that are logarithmically divergent in the infrared. Inserting an infrared
cutoff 4 into the integrals over k turns these divergences into terms ~ In(u). In
the gluon polarization tensor I1,,, to leading order these logarithms do not appear
in m% or m%, but they do show up in the factors for wave-function and mass
renormalization (such as the Z's of eq.(4.9)). While p must be introduced in order
to calculate, any dependence on p should cancel in physical quantites. In some

simple cases, I have shown this explicitly.
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V. The Free Energy at T #0

At tree level for an SU(N) gauge theory, the gluons contribute (N2 — 1)F to

the free energy, where
1 -
BF = EtmlnA“: (p) — tryln p? (5.1)
A;j is the inverse gluon propagator,

- 1
AL (p) = bu P* + (E - 1) Puby + MEu P (5.2)

¢ is the gauge-fixing parameter for covariant gauge. The second term in eq.(5.1), ~
triinp?, is the contribution of ghosts. F is also the correct free energy for an abelian
theory with a Chern-Simons term. While the ghosts decouple in an abelian theory,
Bernard!® has shown that their contribution must still be included in the total free

energy.

The free energy is independent of ¢ : 3(BF)/3¢ ~ tryp*p*Au(p) ~ tryl =0,
so I can choose Feynman gauge, £ = 1. Then

A
triln A7 (p) = triin (P25uv) +tryln (6,“, + m e %) . (5.3)
Performing the trace over the vector indices 4 and v,

(5.4)

2 2
tr+ln A;J(p) =3tryin p2 + tr+ln (.p__-'__ﬁ)

p
In sum,
1
BF = -2—tr+ln (p* + m?), (5.5)
which is the free energy for a massive bosonic particle with a single degree of free-

dom. This was not apparent from eq.(5.1),> but it does agree with the (physical)

degrees of freedom found on the mass shell?3-a single massive mode per color index.

Fermions in the fundamental representation contribute —N;Ntr_in (p2 + m?)
to the free energy/T.

For reference, at low temperatures

mTV

treln(p? + m?) ~

= exp(—m/T) + ... (5.6)
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and at high temperature

2, . 2 Q£7), .
treln(p® + m*) o, — 3 T*Ve(3). (5.7)
€(3) = X952, 1/n3, and V is the volume of space.

It is much harder to compute perturbative corrections to the free energy. One in-
teresting question is whether it is possible to see any sign of fractional statistics. For
distances > m™!, identical particles interacting with topologically massive gauge
fields can be said to exhibit fractional statistics.3> The parameter which determines
how fractional the statistics are is § = g2/m. This fractional statistics only occurs
over large distances, so at best it could only be important at low temperatures,

when the average interparticle separation is large.

Arovas, Schrieffer, Wilczek, and Zee !* have considered identical particles with
fractional statistics of zero size; i.e., point particles. By computing the contribution
of two-body correlations in the low-density limit, they showed that the fractional
statistics affected the free energy of fermions and bosons very differently. In terms
of the fractional parameter §, the corrections to the free energy about the boson
limit are ~ |6|, while about the fermion limit, they are ~ §2.

Two-body correlations will affect the free energy in the present theory at ~ 0(g?).
Unfortunately, there does not appear to be any sign of fractional statistics for the
free energy computed to ~ 0(g?) at low temperatures. While I have not carried
out this computation, matter fields-be they boson or fermion- and gluons will all
contribute to the free energy at ~ 0(g%). As long as the matter fields are massive, at
low temperatures there is no dramatic difference between how boson, as opposed to
fermion, matter fields contribute to the free energy. Indeed, I do not know how any
thermodynamic quantity could simply distinquish between the effects of fractional

statistics from those of “ordinary” interactions.

It is possible to calculate the behavior of the free energy at high temperature
without much trouble. Assume that

T m 1
1< —x
m

7 In{@/m) : (5.8)

the upper bound an T is necessary so that m?, which is a quantum effect, does not

overwhelm the bare m?. This upper bound can always be satisfied in weak coupling,
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when m/g? > 1.

To ~ 0(g?), one contribution to the free energy is from an insertion of the gluon

polarization tensor IT,, (p1po) in a gluon loop.!® For the term with py = 0 involving
I-IOOa

. (N?—-1) / - 1 d’p (N?—-1) (T) 2
- _ =— Tin|—
F 7 1) Tel80) s Gy an "\m) e T
(5.9)
Using eq.(4.7),
2 _
F'= NV 1) ¢*T? In? (T—) + ... (5.10)
82 m

I assert that for high T, F' is the leading correction to the terms ~ T2 in the

free energy, eq.(5.7): relative to F', all other terms will be suppressed at least by
1/In(T/m) or ¢*/T.

Eq.(5.9) also gives a term ~ N;g*T%n(T/m). This is small compared to
eq.(5.10), but in an abelian theory, this term will dominate at high T'. (This assumes
there are no scalars. Scalars contribute ~ ¢g?T?{n?T in the abelian and non-abelian
cases.) |

Generically, to ~ 0(g?) the purely gluonic contributions to the free energy are
of the form 15

F~T3, / A (P,po) 1 (B,po) d*p (5.11)
Po

Logarithms ~ In(T'/m) come from terms ~ [ d2k/ (Ez + m2) , S0 We can concentrate
on the term with po = 0 in eq.(5.10). Similarly, for IT,, the largest contributions in
- the infrared are from diagrams where the internal energy is zero. For example, by
the Ward identity at po = 0, IL;(5,0) is transverse in 7,eq. (4.2). To one loop order,

d*k

L;(5,0) ~ (6 7 — mipy) ¢°T [ ————
i(P,0) (:P PPJ)Q B2 (% + p)?

~ ng In 7’ (6,'1' - g;_)%-) (512)
The estimate of eq.(5.12) is only qualitative; in Landau gauge II;; will not be as

singular as this. u is the infrared cutoff noticed in sec. IV.

Substituting eq.(5.12) into eq.(5.11) gives a term ~ g*T?n(T /m)in(u). As was
argued before, however, the dependence on 4 is an artifact that has to disappear

in any physical quantity. Since the free energy is such a quantity, the In(u)'s must
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cancel, leaving terms ~ ¢?T%[n(T/m); these are down by 1/In{T/m) relative to
eq.(5.9). While I have not checked this cancellation explicitly, there is no sleight of
hand involved here-y is just an infrared cutoff, with no relation to T or m, and so

a in{u) cannot become a In(T/m).

Corrections to higher order in g? are manifestly suppressed by g%/T, and are
negligible. The only higher order that might cause concern is the sum of “neck-
lace” diagrams, F,.ckiace, Since this involves the summation of an infinite number of

diagrams.!® Concentrating on the zero energy term,

1 1 . mim?
Freckiace ~ T/ {ln (1 + 7+ m? mfl) - 7+ m? mfz} d2p ~ —T_" ~ g2m2 ln(T/m),
(5.13)

and F.crizce can also be ignored.

I thank O.Alvarez, B.Grossman, and Prof. K. Uhlenbeck for very helpful dis-

cussions.
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